0=t^2-10

Simple and best practice solution for 0=t^2-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=t^2-10 equation:



0=t^2-10
We move all terms to the left:
0-(t^2-10)=0
We add all the numbers together, and all the variables
-(t^2-10)=0
We get rid of parentheses
-t^2+10=0
We add all the numbers together, and all the variables
-1t^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $

See similar equations:

| 16x-12=8x+6 | | -8p+8=-10-3p-8p | | 12/180=100/x | | -8-6k=-3k+10 | | 12/180=x/100 | | 98=(6x+8)+(5x+2)=180 | | (1/x)=(5/200) | | 12=-3(1-5r) | | 10-10m=-10-8m | | 7x-6=3x-9 | | x=-3=-x | | 2(3x–5)+8(x+2)=-3(-5x+7) | | 3m-4=6-2m | | 40+x+x+60=180 | | -10-8h=9+2-5h | | 15m-6=2m+4 | | 8(7x+10)=56x-1 | | x=2x(81-x) | | -7(-4)+9y=10 | | -4+2n=-5(n+1)+7n | | (5x-5)+(3x-4)=180 | | 45+(22x+1)+(14x+12)=180 | | x2=81169= | | 3x−2=−6x+16 | | -2+b=2b+4 | | -2/w+7=7 | | 7x-(x+3)=27 | | 7x-13=2x-12 | | 6x^3+5x^2-6x^3+5x^2-4x=04x=0 | | 5+5q=4q | | h2=121=11= | | X+7=2x+11 |

Equations solver categories